Pteridine salvage throughout the Leishmania infectious cycle: implications for antifolate chemotherapy.

نویسندگان

  • M L Cunningham
  • S M Beverley
چکیده

Protozoan parasites of the trypanosomatid genus Leishmania are pteridine auxotrophs, and have evolved an elaborate and versatile pteridine salvage network capable of accumulating and reducing pteridines. This includes biopterin and folate transporters (BT1 and FT1), pteridine reductase (PTR1), and dihydrofolate reductase-thymidylate synthase (DHFR-TS). Notably, PTR1 is a novel alternative pteridine reductase whose activity is resistant to inhibition by standard antifolates. In cultured promastigote parasites, PTR1 can function as a metabolic by-pass under conditions of DHFR inhibition and thus reduce the efficacy of chemotherapy. To test whether pteridine salvage occurred in the infectious stage of the parasite, we examined several pathogenic species of Leishmania and the disease-causing amastigote stage that resides within human macrophages. To accomplish this we developed a new sensitive HPLC-based assay for PTR1 activity. These studies established the existence of the pteridine salvage pathway throughout the infectious cycle of Leishmania, including amastigotes. In general, activities were not well correlated with RNA transcript levels, suggesting the occurrence of at least two different modes of post-transcriptional regulation. Thus, pteridine salvage by amastigotes may account for the clinical inefficacy of antifolates against leishmaniasis, and ultimately provide insights into how this may be overcome in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania

Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pterid...

متن کامل

The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.

Trypanosomatid protozoans depend upon exogenous sources of pteridines (pterins or folates) for growth. A broad spectrum pteridine reductase (PTR1) was recently identified in Leishmania major, whose sequence places it in the short chain alcohol dehydrogenase protein family although its enzymatic activities resemble dihydrofolate reductases. The properties of PTR1 suggested a role in essential pt...

متن کامل

New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.

Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected ant...

متن کامل

Molecular cloning, expression and enzymatic assay of pteridine reductase 1 from Iranian lizard Leishmania.

BACKGROUND Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pteridi...

متن کامل

Folate metabolic pathways in Leishmania.

Trypanosomatid parasitic protozoans of the genus Leishmania are autotrophic for both folate and unconjugated pteridines. Leishmania salvage these metabolites from their mammalian hosts and insect vectors through multiple transporters. Within the parasite, folates are reduced by a bifunctional DHFR (dihydrofolate reductase)-TS (thymidylate synthase) and by a novel PTR1 (pteridine reductase 1), w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and biochemical parasitology

دوره 113 2  شماره 

صفحات  -

تاریخ انتشار 2001